https://doi.org/10.4081/ltj.2024.405 Potential efficacy of fractional CO2 laser in treating port wine stain birthmarks with hypertrophy PDF Vol. 31 No. 2 (2024) Newsletter Published: 11 September 2024 Fractional CO2 laser, port wine stain birthmarks Abstract Views: 1667 PDF: 307 Publisher's note All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher. Authors Tingwei Zhang wuyang20200000@gmail.com Zibo Municipal Hospital, Zibo, Shandong, China. Abstract Dear Editor, Port wine stain birthmarks are congenital vascular diseases caused by excessive capillary dilation, leading to red or purple skin discoloration. As patients age, the lesions often thicken, with 65% developing hypertrophy. Dilated vessels typically range from 10-150m in diameter and are located 0.6 mm under the skin, but in hypertrophy, they can reach up to 500m and extend to 3.7 mm deep.1 Current treatments, including various lasers and photodynamic therapy, target hemoglobin based on the theory of selective photothermolysis. However, these treatments often fall short, especially in patients with hypertrophy. For example, Pulsed Dye Lasers (PDL), the gold standard, may not fully photocoagulate vessels outside the 20-150m range, dense blood vessel areas, or vessels located deeper than 0.65mm. Potassium Titanyl Phosphate (KTP) lasers and photodynamic therapy may work better on smaller vessels but are limited by epidermal thickness and melanin. Neodymium: yttrium-aluminum-garnet (Nd: YAG) lasers can occlude deeper vessels more effectively than PDL but carry a higher risk of scarring. [...] Metrics Dimensions Altmetric PlumX Metrics Downloads Download data is not yet available. Citations References Troilius A, Svendsen G, Ljunggren B. Ultrasound investigation of port wine stains: clinical report. Acta Derm Venereol 2000;80:196-9. DOI: https://doi.org/10.1080/000155500750042961 Laubach HJ, Tannous Z, Anderson RR. A histological evaluation of the dermal effects after fractional photothermolysis treatment. Lasers Surg Med 2005;36:86. Alexiades-Armenakas M, Sarnoff D, Gotkin R, Sadick N. Multi-center clinical study and review of fractional ablative CO2 laser resurfacing for the treatment of rhytides, photoaging, scars and striae. J Drugs Dermatol 2011;10:352-62. Zhang T. Extended application of fractional carbon dioxide laser in the treatment of port wine stain birthmarks with hypertrophy: a case report. Photobiomodul Photomed Laser Surg 2023;41:189-92. DOI: https://doi.org/10.1089/photob.2022.0149 Citation / Copyright How to Cite Zhang, T. (2024). Potential efficacy of fractional CO<sub>2</sub> laser in treating port wine stain birthmarks with hypertrophy. Laser Therapy, 31(2). https://doi.org/10.4081/ltj.2024.405 More Citation Formats ACM ACS APA ABNT Chicago Harvard IEEE MLA Turabian Vancouver Download Citation Endnote/Zotero/Mendeley (RIS) BibTeX Copyright (c) 2024 the Author(s) This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published. Similar Articles Piero Ronchi, Simone Scarcella, Stefano Manno, Valerio Beatrici, Lucio Dell’Atti, Dual laser circumcision: a novel technique to improve traditional surgery , Laser Therapy: Vol. 29 No. 1 (2022) Shimon Rochkind, Phototherapy (photobiomodulation) for peripheral nerve and muscle injury , Laser Therapy: Vol. 30 No. 1 (2023) Volodymyr Tsepkolenko, Hanna Tsepkolenko, Comprehensive approach to correct involutional-dystrophic skin changes in women , Laser Therapy: Vol. 29 No. 2 (2022) Monique Ralph, Cameron Hurst, Sheridan Guyatt, Kathleen Goldsmith, E-Liisa Laakso, In post-natal women with nipple pain, does photobiomodulation therapy (PBMT) at 660 nm compared with sham PBMT reduce pain on breastfeeding? A case series during COVID-19 , Laser Therapy: Vol. 30 No. 1 (2023) Jiahui Niu, Yupu Li, Yi Ding, Carlo Fornaini, Photobiomodulation for Angina Bullosa Haemorrhagica treatment: a case report , Laser Therapy: Vol. 31 No. 1 (2024) María José Araujo, Alejandro Carbone, Preliminary application study on LABIELLE (Labial EndoliftX Laser Enhancement) vulvar treatment for labia minora and majora tightening , Laser Therapy: Vol. 31 No. 1 (2024) Ana Elena Aviña, Nguyen Le Thanh Hang Agnes, Chen-Jen Chang, Report on the 3rd International Scientific Meeting on Cosmetic Dermatology incorporated with the International Society for Laser Surgery and Medicine Congress 2023, Bali, Indonesia, June 16th-18th , Laser Therapy: Vol. 30 No. 2 (2023) Hui Chao Wang, Yang Liu, Xiaoxi Tian, Carlo Fornaini, Combined laser, guided bone regeneration and probiotics approach in the treatment of periimplantitis: a case report , Laser Therapy: Vol. 31 No. 2 (2024) Sakshi K. Nerkar, Rashmi Hegde, Nida Shaikh, Neha Langade, A PCR-based study to evaluate the effectiveness of photodynamic therapy in extraction socket disinfection , Laser Therapy: Vol. 31 No. 2 (2024) Carlo Fornaini, Huichao Wang, YuPu Li, Jean Paul Rocca, Light-Emitting-Diode photochemical effects in dentistry: an overview , Laser Therapy: Vol. 31 No. 1 (2024) << < 1 2 3 4 5 > >> You may also start an advanced similarity search for this article.