https://doi.org/10.4081/ltj.2023.324 Phototherapy (photobiomodulation) for peripheral nerve and muscle injury PDF Vol. 30 No. 1 (2023) Published: 4 September 2023 Phototherapy, photobiomodulation, peripheral nerve and muscle injury Abstract Views: 2704 PDF: 75 Publisher's note All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher. Authors Shimon Rochkind rochkind@zahav.net.il Specialist in Neurosurgery & Microsurgery, Head, Microsurgical Center for Peripheral Nerve Reconstruction, Assuta Medical Center, Tel Aviv, Israel. Abstract Severe peripheral nerve and muscle injuries are a highly prevalent condition for both civilians and military personnel caused by traffic accidents, work injuries, acts of violence, as well as combat events. Peripheral nerve injury is a substantial problem that annually affects more than several millions of people all over the world. For most patients who suffer from severe peripheral nerve injuries spontaneous recovery may eventually occur, but it is slow and frequently incomplete. Effective posttraumatic nerve repair and decrease or prevention of corresponding muscle atrophy remain a great challenge to restorative medicine. A certain clinical interest began to appear in the potential therapeutic value of laser phototherapy (new name – laser photobiomodulation) for regeneration enhancement of injured peripheral nerve as well as for restoration or prevention of denervated muscle atrophy. Although a pioneering report regarding the effects of laser phototherapy on the regeneration of traumatically injured peripheral nerves was published in the late 1970s,1 it is only since the end of past century - early 2000s that scientific interest in this therapeutic approach for neural rehabilitation has appeared, leading to publication of several studies that have shown positive effects of phototherapy on peripheral nerve regeneration.2 [...] Metrics Dimensions Altmetric PlumX Metrics Downloads Download data is not yet available. Citations References Rochkind S. Stimulation effect of laser energy on the regeneration of traumatically injured peripheral nerves. Morphogen Regen 1978;83:25-27. Gigo-Benato D, Geuna S, Rochkind S. Phototherapy for enhancing peripheral nerve repair: a review of the literature. Muscle Nerve 2005;31:694-701. DOI: https://doi.org/10.1002/mus.20305 Rochkind S. Phototherapy in peripheral nerve regeneration: From basic science to clinical study. Neurosurg Focus 2009;26:E8. DOI: https://doi.org/10.3171/FOC.2009.26.2.E8 Shamir MH, Rochkind S, Sandbank J, Alon M. Double-blind randomized study evaluating regeneration of the rat transected sciatic nerve after suturing and postoperative low power laser treatment. J Reconstruct Microsurg 2001;17:133-138. DOI: https://doi.org/10.1055/s-2001-12702 Rochkind S, Leider-Trejo L, Nissan M, et al. Efficacy of 780-nm laser phototherapy on peripheral nerve regeneration after neurotube reconstruction procedure (double-blind randomized study). Photomed Laser Surg 2007;25:137-143. DOI: https://doi.org/10.1089/pho.2007.2076 Gigo-Benato D, Geuna S, de Castro Rodrigues A, et al. Low-power laser biostimulation enhances nerve repair after end-to-side neurorrhaphy: A double-blind randomized study in the rat median nerve model. Laser Med Sci 2004;19:57-65. DOI: https://doi.org/10.1007/s10103-004-0300-3 Rochkind S, Drory V, Alon M, et al. Laser phototherapy (780 nm), a new modality in treatment of log-term incomplete peripheral nerve injury: A randomized double-blind placebo-controlled study. Photomed Laser Surg 2007;25:436-442. DOI: https://doi.org/10.1089/pho.2007.2093 Rochkind S, Shainberg A. Protective effect of laser phototherapy on acetylcholine receptors and creatine kinase activity in denervated muscle. Photomed Laser Surg 2013;31:499-504. DOI: https://doi.org/10.1089/pho.2013.3537 Rochkind S, Geuna S, Shainberg A. Phototherapy and nerve injury: focus on muscle response. Inter Rew Neurobiol 2013;109:99-109. DOI: https://doi.org/10.1016/B978-0-12-420045-6.00004-3 Mandelbaum-Livnat M, Almog M, Nissan M, et al. Photobiomodulation triple treatment in peripheral nerve injury: nerve and muscle response. Photomed Laser Surg 2016;34:638-645. DOI: https://doi.org/10.1089/pho.2016.4095 Andreo L, Ribeiro B, Alves A, et al. Effects of photobiomodulation with low-level laser therapy on muscle repair following a peripheral nerve injury in Wistar rats. Photochem Photobiol 2020;96:1124-1132. DOI: https://doi.org/10.1111/php.13255 Almog M, Nissan M, Koifman I, et al. On-site laser photobiomodulation treatment of crushed muscle due to prolonged pressure in rats. Laser Surg Med 2021;53:1258-1265. DOI: https://doi.org/10.1002/lsm.23417 Falcai MJ, Monte-Raso VV, Okubo R, et al. Biomechanical and histological analysis of the gastrocnemius in rats subjected to muscle injury and treatment with low-level laser therapy. Rev Bras Ortop 2010;45:444-448. DOI: https://doi.org/10.1016/S2255-4971(15)30395-5 Rizzi CF, Mauriz JL, Freitas Corrêa DS, et al. Effects of low-level laser therapy (LLLT) on the nuclear factor (NF)-kappaB signaling pathway in traumatized muscle Lasers Surg Med 2006;38:704-713. DOI: https://doi.org/10.1002/lsm.20371 Silveira PC, da Silva LA, Pinho CA, et al. Effects of low-level laser therapy (GaAs) in an animal model of muscular damage induced by trauma. Lasers Med Sci 2013;28:431-436. DOI: https://doi.org/10.1007/s10103-012-1075-6 Iyomasa DM, Garavelo I, Iyomasa MM, et al. Ultrastructural analysis of the low-level laser therapy effects on the lesioned anterior tibial muscle in the gerbil. Micron 2009;40:413-418. DOI: https://doi.org/10.1016/j.micron.2009.02.002 Citation / Copyright How to Cite Rochkind, S. (2023). Phototherapy (photobiomodulation) for peripheral nerve and muscle injury. Laser Therapy, 30(1). https://doi.org/10.4081/ltj.2023.324 More Citation Formats ACM ACS APA ABNT Chicago Harvard IEEE MLA Turabian Vancouver Download Citation Endnote/Zotero/Mendeley (RIS) BibTeX Copyright (c) 2023 the Author(s) This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published. Similar Articles Diego Longo, Giulio Cherubini, Vanessa Mangè, Paolo Lippi, Leonardo Longo, Daniela Melchiorre, Maria Angela Bagni, Effects of laser therapy and Grimaldi’s muscle shortening maneuver on spasticity in central nervous system injuries , Laser Therapy: Vol. 29 No. 1 (2022) Clarissa Wiemputri Wangsa, Indrayadi Gunardi, Rahmi Amtha, Melanie Sadono Djamil, Elizabeth Fitriana Sari, Photobiomodulation therapy for oral lesions: a bibliometric analysis , Laser Therapy: Vol. 31 No. 2 (2024) Jiahui Niu, Yupu Li, Yi Ding, Carlo Fornaini, Photobiomodulation for Angina Bullosa Haemorrhagica treatment: a case report , Laser Therapy: Vol. 31 No. 1 (2024) Luiz Henrique Gomes Santos, Lívia Assis, Carla Roberta Tim, Thatiane Izabele Ribeiro Santos, Cintia Cristina Santi Martignago, Mirian Bonifácio Silva, Fernando Vasilceac, Mariane Santos Trevisan, Daniel Araki Ribeiro, Lillian Cristina Lopes Cunha, Nivaldo Antonio Parizotto, Ana Claudia Rennó, Effectiveness of photobiomodulation and resistive exercise on cartilage tissue in osteoarthritic rats , Laser Therapy: Vol. 31 No. 2 (2024) Carlo Fornaini, Huichao Wang, YuPu Li, Jean Paul Rocca, Light-Emitting-Diode photochemical effects in dentistry: an overview , Laser Therapy: Vol. 31 No. 1 (2024) Monique Ralph, Cameron Hurst, Sheridan Guyatt, Kathleen Goldsmith, E-Liisa Laakso, In post-natal women with nipple pain, does photobiomodulation therapy (PBMT) at 660 nm compared with sham PBMT reduce pain on breastfeeding? A case series during COVID-19 , Laser Therapy: Vol. 30 No. 1 (2023) Leonardo Longo, Roberto Dell'Avanzato, Diego Longo, ENDOLIFT® and multi-wavelength laser photobiomodulation: a randomized controlled trial study on 96 subjects, treating skin laxity of the lower third of the face , Laser Therapy: Vol. 29 No. 1 (2022) Antonio Leccisotti, Stefania V. Fields, Giuseppe De Bartolo, Christian Crudale, Matteo Posarelli, Keratorefractive lenticule extraction in eyes with post-herpetic scars , Laser Therapy: Vol. 31 No. 1 (2024) David M. Harris, Spectra of pathogens predict lethality of blue light photo-inactivation , Laser Therapy: Vol. 30 No. 1 (2023) Hui Chao Wang, Yang Liu, Xiaoxi Tian, Carlo Fornaini, Combined laser, guided bone regeneration and probiotics approach in the treatment of periimplantitis: a case report , Laser Therapy: Vol. 31 No. 2 (2024) 1 2 > >> You may also start an advanced similarity search for this article.